Abstract
Axial gradients in wall elasticity may have significant implications in the deformation and flow characteristics of a narrow fluidic conduit, bearing far-reaching consequences in physiology and bio-engineering. Here, we present a theoretical and experimental framework for fluid-structure interactions in microfluidic channels with axial gradients in wall elasticity, in an effort to arrive at a potential conceptual foundation for in vitro study of mirovascular physiology. Towards this, we bring out the static deformation and steady flow characteristics of a circular microchannel made of polydimethylsiloxane (PDMS) bulk, considering imposed gradients in the substrate elasticity. In particular, we study two kinds of elasticity variations - a uniformly soft (or hard) channel with a central strip that is hard (or soft), and, increasing elasticity along the length of the channel. The former kind yields a centrally constricted (or expanded) deformed profile in response to the flow. The latter kind leads to increasingly bulged channel radius from inlet to outlet in response to flow. We also formulate an analytical model capturing the essential physics of the underlying elastohydrodynamic interactions. The theoretical predictions match favourably with the experimental observations and are also in line with reported results on stenosis in mice. The present framework, thus, holds the potential for acting as a fundamental design basis towards developing in vitro models for micro-circulation, capable of capturing exclusive artefacts of healthy and diseased conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.