Abstract

A numerical simulation is carried out to analyze the flow field of cooling air through the radiator and engine compartment. In order to consider the strong effect of the suction-type flow by the cooling fan at engine idling condition, a potential flow analysis is attempted by the assumption of a line sink located at the position of the cooling fan. The governing equations for steady two-dimensional, incompressible, turbulent flow are solved with the two-equationk-e model for turbulence. The velocity profiles in the underhood engine compartment and around the front-end of a real vehicle are measured to compare with the numerical results. The agreement between the numerical and experimental results is fairly good. It is concluded that a two-dimensional computation is a fast and efficient tool for predicting the effect of front-end design on the cooling air flow through the radiator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.