Abstract

The article presents an analysis of flow through a differential switching valve installed inside a throttle-check valve block. The valve is mounted in a sandwich type arrangement together with a control valve according to ISO 4401 standard. This type of block arrangement is popular and commonly used in hydraulic drive systems. The development of a typical throttle-check valve using a differential switching valve makes it possible to add a secondary fluid stream and thus increase the inflow rate to an actuator, which is particularly important in fixed-delivery pump systems. Due to the limited range of valve dimensions and the need to adapt flow paths to connection ports, channels of complex geometry are made inside the valve block. Therefore, the main aim of the work was to properly profile geometry of the differential switching valve spool in order to obtain a smooth opening in the entire displacement range. A 3D model of flow paths was built and CFD analysis was carried out. The obtained results of numerical simulations have been confirmed experimentally on a test bench. The CFD analysis allowed values of velocity and pressure profiles as well as axial flow force acting on the spool to be determined. The proposed new shapes of the spool head geometry significantly increase the spool head operating range. Although flow rate in the initial phase of switching valve opening was reduced, the amplitude of fluid flow fluctuations also decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.