Abstract

It is well recognized that an increase in glomerular filtration rate leads to an increase in fluid, Na+ and HCO3- absorption in proximal tubules; however, underlying mechanisms of this modulation have not been delineated. This review provides an update of flow-activated transport events along the nephron. Transporters, flow-sensors and secondary messengers that may modulate flow are also discussed. We have demonstrated that both NHE3 and H-ATPase activities are modulated by axial flow in mouse proximal tubules in vitro. Experimental data and modeling calculations provide strong evidence that brush-border microvilli function as flow sensors in the proximal tubule. In addition, AngII receptor localization is regulated by flow in cultured proximal tubule cells, and flow induces eNOS translocation in TAL. Flow-modulated NHE3 activity is the regulatory mechanism for GTB. It is independent of neuron and systemic hormonal regulation, but requires the intact actin cytoskeleton to transmit the signal of altered axial flow sensed by brush-border microvilli. Unanswered questions include the identification of specific signaling transduction mechanisms and second messengers in response to flow. Whether the Na+/2Cl-/K+-cotransporter in TAL is flow-activated, and whether a divalent cation, Ca2+ and Mg2+ transport, can be regulated by flow is unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.