Abstract

Abstract Thermal characteristics of refined wheat flour blend made with 90% Ohio soft red winter wheat and 10% Canadian Hard Red Winter Wheat are explored using a series of modulated differential scanning calorimeter conditions. Influences of pan type, period, amplitude of the thermal modulation, and underlying thermal heating rate on flour starch thermal transitions are presented. Wheat flour was blend 1:1 with water, and then heated at various heating rates while the amplitude and period of the instantaneous heating rate was modulated between ±0.5 and ±1.0 °C amplitude and 60 s to 80 s period. Study shows faster heating rates favor increased total heat flow and results in proportional increases in both reversing and non-reversing thermokinetic events of recrystallization. Slower overall heating rates (e.g., 2.5 °C min−1) produced better resolution of thermal events related to preexisting structural phases, but allowed more time for creation of new events such as recrystallization, annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.