Abstract

Animal-pollinated plants face a common problem, how their defensive anti-herbivore compounds may impair or alter pollinator behavior. Evolution has tailored multiple solutions, which largely involve pollinator tolerance or manipulation, to the benefit of the plant, not the removal of these compounds from pollen or nectar. The tea plant, Camilla sinensis, is famous for the caffeine and tea polyphenols (TP) that it produces in its leaves. However, these compounds are also found in its nectar, which honey bees readily collect. We examined the effects of these compounds on bee foraging choices, learning, memory, and olfactory sensitivity. Foragers preferred a sucrose feeder with 100 µg or 10 µg TP/ml over a control feeder. Caffeine, but not TP, weakly increased honey bee learning. Both caffeine and TP significantly increased memory retention, even when tested 7 d after the last learning trial. In addition, TP generally elevated EAG responsiveness to alarm pheromone odors. These results demonstrate that other secondary plant compounds, not only caffeine, can attract pollinators and influence their learning and memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call