Abstract

Floral symmetry has a relevant status in the study of both pollination biology and animal behavior. In this work, a brief review and classification of symmetry types in flowers is provided as a basis for understanding the role of floral symmetry in pollination phenomena. We focus on insects as a fundamental group of pollinators, and we discuss symmetry from the perspective of insect perception. We conclude that symmetry is a specific cue with a signal value that is perceived by insect pollinators. A simple nervous system, such as that of honeybees, is capable of an extremely flexible and adaptive processing of symmetry. Performances consistent with categorization and concept building may be observed, provided that appropriate learning paradigms are employed. Perfectly symmetrical flowers might signal a high quality and/or quantity of nectar or pollen to pollinators that, in turn, might exert strong selection pressure on symmetric features. However, coadaptation arguments in the strict sense are not adequate because it is impossible to determine whether the insect's capacity to perceive symmetry is younger or older than is the origin of flower symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.