Abstract

Volatile chemicals emitted from the flowers of chinese wisteria (Wisteria sinenesis) and japanese wisteria (W. floribunda) were collected using a dynamic headspace technique and identified using gas chromatography–mass spectrometry; 28 and 22 compounds were detected from chinese wisteria and japanese wisteria flowers, respectively. These chemicals can be classified into four major classes, including fatty acid derivatives, benzenoids/phenylpropanoids, terpenoids, and nitrogen-containing compounds. Two monoterpenes, (E)-β-ocimene and linalool, belonging to the class of terpenoids, were the most abundant compounds emitted from both species. Despite strong similarity, the floral volatile profiles of the two species displayed variations in both quality and quantity. Chinese wisteria was selected as a model for further study of volatile emission from different parts of flowers, emission dynamics, and regulation of floral scent production. Although floral volatiles were detected from all flower parts, petals emitted the most. The emission of floral volatiles displayed a diurnal pattern with the maximal emissions occurring during the daytime. This rhythmic pattern was determined to be light-dependent. Regulation of floral volatile emission by exogenous chemicals, including silver thiosulphate (an ethylene inhibitor), salicylic acid, and jasmonic acid, also was analyzed. Generally, jasmonic acid promoted the emission of floral volatiles. In contrast, neither silver thiosulphate nor salicylic acid showed a significant effect on floral volatile emission. The results presented in this article suggest that wisteria can serve as a useful system for exploring novel biochemistry of floral scent biosynthesis. They also build a foundation for the study of the biological/ecological significance of floral volatiles on the reproductive biology of wisteria species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.