Abstract

Comparisons between floral scent-based and DNA-molecular-based taxonomies are rare, yet such comparisons indicate that scent can provide useful taxonomic information. Here, we correlate the phytochemical differentiation in floral scent to the DNA-molecular-based differentiation in the genus Sorbus. Inflorescence scent patterns of the apomictic and endemic Sorbus latifolia microspecies Sorbus franconica, Sorbus adeana, and Sorbus cordigastensis originated by hybridization as well as their parental taxa Sorbus aria agg. and Sorbus torminalis were investigated with the dynamic headspace method. The scent data (presence/absence of compounds) were used to construct an UPGMA tree, to calculate a similarity matrix, and to correlate them with the published amplified fragment length polymorphism (AFLP) data of the same individuals, populations, and taxa. Flow cytometry was used to estimate the DNA-ploidy level of the taxa. Scent analyses showed a total of 68 substances, among them aromatic compounds, terpenoids, aliphatics, and nitrogen-containing compounds. The scent patterns were taxon-specific, and the number of scent components differed among taxa. The correlations with the published AFLP data on population and individual level are highly significant, indicating that the scent and AFLP data are highly congruent in the plants studied. Scent therefore provides useful taxonomic characters in Sorbus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.