Abstract

Integration of environmental and endogenous cues at plant shoot meristems determines the timing of flowering and reproductive development. The MADS box transcription factor FLOWERING LOCUS C (FLC) of Arabidopsis thaliana is an important repressor of floral transition, which blocks flowering until plants are exposed to winter cold. However, the target genes of FLC have not been thoroughly described, and our understanding of the mechanisms by which FLC represses transcription of these targets and how this repression is overcome during floral transition is still fragmentary. Here, we identify and characterize TARGET OF FLC AND SVP1 (TFS1), a novel target gene of FLC and its interacting protein SHORT VEGETATIVE PHASE (SVP). TFS1 encodes a B3-type transcription factor, and we show that tfs1 mutants are later flowering than wild-type, particularly under short days. FLC and SVP repress TFS1 transcription leading to deposition of trimethylation of Iysine 27 of histone 3 (H3K27me3) by the Polycomb Repressive Complex 2 at the TFS1 locus. During floral transition, after downregulation of FLC by cold, TFS1 transcription is promoted by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS box protein encoded by another target of FLC/SVP. SOC1 opposes PRC function at TFS1 through recruitment of the histone demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) and the SWI/SNF chromatin remodeler ATPase BRAHMA (BRM). This recruitment of BRM is also strictly required for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) binding at TFS1 to coordinate RNAPII recruitment through the Mediator complex. Thus, we show that antagonistic chromatin modifications mediated by different MADS box transcription factor complexes play a crucial role in defining the temporal and spatial patterns of transcription of genes within a network of interactions downstream of FLC/SVP during floral transition.

Highlights

  • The transition from vegetative to reproductive development in plants is controlled by a complex transcriptional network that responds both to environmental cues and endogenous hormonal signals [1, 2]

  • FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) are related transcription factors that act in concert to strongly inhibit flowering in crucifer plants through repressing transcription of their target genes

  • Many direct FLC/ SVP targets have been identified in genome-wide studies, few of these genes have been characterized for their roles in regulating flowering time or other aspects of reproductive development

Read more

Summary

Introduction

The transition from vegetative to reproductive development in plants is controlled by a complex transcriptional network that responds both to environmental cues and endogenous hormonal signals [1, 2]. We utilize data derived from genome-wide binding studies of FLC and its partner MADS box transcription factor SHORT VEGETATIVE PHASE (SVP) [7, 9,10,11,12] to identify a common target gene that we named TARGET of FLC and SVP 1 (TFS1). We show that this gene acts in the network downstream of FLC and other floral regulators, and has an important role on the flanks of the meristem during the early stages of floral development

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call