Abstract
A buffering mechanism in co-evolutionary relationships could be to display phenotypic plasticity in response to environmental changes. In the nursery pollination mutualism between the European globeflower and its exclusive fly pollinators, adults feed and mate in flowers, and larvae develop feeding on seeds. Flower number and size influence fitness for both partners, and large flowers attract more flies. We tested floral plasticity in plants from two contrasting environments: a high-altitude heath and low- and intermediate-altitude meadow forests. High-altitude plants have single flowers, while meadow-forest plants sometimes have multiple flowers. Plants were grown for 3 years in a garden and supplied with eight times more nutrients than available in natural soils, given to controls. During the experiment, over 90% of all plants with excess nutrients flowered, while in controls, 40% (high-altitude) to 75–78% (meadow-forest) plants flowered. Excess nutrients stimulated 30% larger flowers, and in meadow-forest plants flower number increased 4.5–5 times. Flower number was only doubled in high-altitude plants. High-altitude plants displayed less plasticity, and possibly, a different genetic strategy involving meristem limitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.