Abstract

Intricate associations between floral morphology and pollinator foraging behaviour are common. In this context, the presence and form of floral nectaries can play a crucial role in driving floral evolution and diversity in flowering plants. However, the reconstruction of the ancestral state of nectary form is often hampered by a lack of anatomical studies and well-resolved phylogenetic trees. Here, we studied 39 differentially pollinated Pedicularis spp., a genus with pronounced interspecific variation in colour, shape and size of the corolla. Anatomical and scanning electron microscopy observations revealed two nectary forms [bulged (N=27) or elongated (N=5)] or the absence of nectaries (N=7). In a phylogenetic context, our data suggest that: (1) the bulged nectary should be the ancestral state; (2) nectaries were independently lost in some beaked species; and (3) elongated nectaries evolved independently in some clades of beakless species. Phylogenetic path analysis showed that nectary presence is indirectly correlated with beak length/pollinator behaviour through an intermediate factor, nectar production. No significant correlation was found between nectary type and nectar production, beak length or pollinator behaviour. Some beaked species had nectary structures, although they did not produce nectar. The nectary in beaked species may be a vestigial structure retained during a recent rapid radiation of Pedicularis, especially in the Himalaya-Hengduan Mountains of south-western China.(c) 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 592-607.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call