Abstract

Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

Highlights

  • Floral longevity (FL), defined as the length of time that a flower remains open and functional, influences the processes of pollen removal and pollination (Primack, 1985; Ashman and Schoen, 1994)

  • Within our sample group of 11 species of Paphiopedilum, we found large interspecific diversity in leaf dry mass per unit area, leaf area, flower dry mass per unit area, floral area, FL, FIGURE 4 | Pearson correlations (A) and phylogenetically independent contrast correlation (B) of FL with floral area (FA) across 11 Paphiopedilum species

  • Significant relationships were found among traits associated with FL, floral dry mass per unit area (FMA), and flower maintenance

Read more

Summary

Introduction

Floral longevity (FL), defined as the length of time that a flower remains open and functional, influences the processes of pollen removal and pollination (Primack, 1985; Ashman and Schoen, 1994). This functional trait varies greatly among species and is an important contributor to increased reproductive success because a longer flowering period can allow plants to attract more pollinators. Longevity is improved in plants growing at higher elevations or lower temperatures, or in areas where soil moisture is high (Vespirini and Pacini, 2005; Arroyo et al, 2013; Jorgensen and Arathi, 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call