Abstract

Abstractmagnified imageTopological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.