Abstract
We investigate the linear Floquet stability of two fluid layers undergoing oscillations in the direction parallel to the flexible wall that separates them. This canonical configuration is inspired by the cerebrospinal fluid flow in the spinal canal of subjects with hydromyelia/syringomyelia. The analysis focuses on the marginal conditions for the onset of instability, and how these depend on the spatial wavelength of the perturbation, and on the values of the control parameters, which are the two channel widths, the Reynolds number and the wall stiffness. Unstable perturbations are found to oscillate synchronous with the base flow. The wavelength of the most unstable perturbation, of the order of the stroke length of the basic oscillatory motion, depends strongly on the wall stiffness, but is only weakly influenced by the channel widths and the Reynolds number. In general, around criticality, it was found that increasing the Reynolds number has a destabilizing effect, and that decreasing the canal widths stabilizes the instability. The wall stiffness on the other hand has a non-monotonic effect, exhibiting an intermediate value for which the instability is maximally amplified. The present analysis is a first step towards a better understanding of the physical mechanisms that govern many (bio)fluid mechanical problems that involve oscillatory flows near compliant walls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.