Abstract

Controlling interactions is the key element for the quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian that exhibits vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. By applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semiclassical simulation. Engineering a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of nonequilibrium dynamics in a single experimental setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call