Abstract
We propose new applications of Floquet theory in Rydberg atoms for constructing quantum entangling gates in atomic ground-state manifolds. By dynamically periodically modulating the Rabi frequencies of transitions between ground and Rydberg states of atoms, error-resilient two-qubit entangling gates can be implemented in the regime of Rydberg blockade. According to different degrees of Floquet theory utilization, the fidelity of the resulting controlled gates surpasses that of the original reference, and it exhibits high robustness against Rabi error in two qubits and detuning error in the control qubit. Our method only uses encoding in the ground states, and compared to the original scheme using Rydberg state for encoding, it is less susceptible to environmental interference, making it more practical to implement. Therefore, our approach may have broader applications or potential for further expansion of geometric quantum computation with neutral atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.