Abstract

Time-periodic light field can dress the electronic states and lead to light-induced emergent properties in quantum materials. While below-gap pumping is regarded favorable for Floquet engineering, so far direct experimental evidence of momentum-resolved band renormalization still remains missing. Here, we report experimental evidence of light-induced band renormalization in black phosphorus by pumping at photon energy of 160meV, which is far below the band gap, and the distinction between below-gap pumping and near-resonance pumping is revealed. Our Letter demonstrates light-induced band engineering upon below-gap pumping, and provides insights for extending Floquet engineering to more quantum materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.