Abstract

We propose a new class of error-correcting dynamic codes in two and three dimensions that has no explicit connection to any parent subsystem code. The two-dimensional code, which we call the CSS (Calderbank-Shor-Steane) honeycomb code, is geometrically similar to that of the honeycomb code by Hastings and Haah and also dynamically embeds an instantaneous toric code. However, unlike the honeycomb code, it possesses an explicit CSS structure and its gauge checks do not form a subsystem code. Nevertheless, we show that our dynamic protocol conserves logical information and possesses a threshold for error correction. We generalize this construction to three dimensions and obtain a code that fault tolerantly alternates between realizing two type-I fracton models, the checkerboard and the X-cube model. Finally, we show the compatibility of our CSS honeycomb-code protocol and the honeycomb code by showing the possibility of randomly switching between the two protocols without information loss while still measuring error syndromes. We call this more general aperiodic structure “dynamic tree codes,” which we also generalize to three dimensions. We construct a probabilistic finite automaton prescription that generates dynamic tree codes correcting any single-qubit Pauli errors and can be viewed as a step toward the development of practical fault-tolerant random codes.1 MoreReceived 27 December 2022Accepted 21 April 2023DOI:https://doi.org/10.1103/PRXQuantum.4.020341Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum error correctionQuantum memoriesSurface code quantum computingTopological orderTopological phases of matterQuantum Information

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call