Abstract

Using ab initio tight-binding approaches, we investigate Floquet band engineering of the 1T’ phase of transition metal dichalcogenides (MX2, M = W, Mo and X = Te, Se, S) monolayers under the irradiation with circularly polarized light. Our first principles calculations demonstrate that light can induce important transitions in the topological phases of this emerging materials family. For example, upon irradiation, Te-based MX2 undergoes a phase transition from quantum spin Hall (QSH) semimetal to time-reversal symmetry broken QSH insulator with a nontrivial band gap of up to 92.5 meV. On the other hand, Se- and S-based MX2 undergoes the topological phase transition from the QSH effect to the quantum anomalous Hall effect and into trivial phases with increasing light intensity. From a general perspective, this theoretical work brings further insight into non-equilibrium topological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call