Abstract

Abstract Distributed real-time systems often rely on clock synchronization. However, the achievement of precise synchronization in Wireless Sensor Networks (WSNs) is hampered by competing design challenges, which finally causes many WSN hardware platforms to rely on low frequency clock crystal for local timebase provision. Although this solution is inexpensive and with a remarkably low energy consumption, it limits the resolution at which time can be measured. The FLOPSYNC synchronization scheme was then introduced to compensate for possible quartz crystal imperfections. The main limitation of FLOPSYNC is that it does not account for the effects of quantization. In this paper we propose a switched control variant of the base FLOPSYNC scheme to address quantization explicitly in the compensator design, providing clock synchronization in cost-sensitive WSN node platforms with a minimal additional overhead. Experimental evidence is given that the approach reaches a synchronization error of at most 1 clock tick in a real WSN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.