Abstract

A hierarchical technique is presented for floorplanning and pin assignment of general cell layouts. Given a set of cells with their shape lists, a layout aspect ratio, relative positions of the external I/O pads and upper bound delay constraints for a set of critical nets, the authors determine shapes and positions of the cells, locations of the floating pins on cells and a global routing solution such that a linear combination of the layout area, the total interconnection length and constraint violations for critical nets is minimized. Floorplanning, pin assignment and global routing influence one another during the hierarchical steps of the algorithm. The pin assignment algorithm is flexible and allows various user specified constraints such as pre-specified pin locations, feedthrough pins, length-critical nets and planar net topologies. Placement, timing and floorplanning results for a Xerox general cell benchmark are reported. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.