Abstract

As the performance of a processing system is to be significantly enhanced, on-chip many-core architecture plays an indispensable role. Explorations of a suitable three-dimensional integrated circuit (3D IC) with through-silicon via (TSV) to realize a large number of processing units and highly dense interconnects certainly attract the attention. However, the combination of processors, memories, and/or sensors in a die stack leads to the cooling problem in a tottering situation. Consequently, a thermal solution which has a high heat removing rate seems unavoidable. The floorplan and routing of the chip should be rearranged after the thermal solution is performed. By utilizing the thermal ridge, the routing spaces between hot core-groups (CGs) need to be expanded until they cannot affect each other. Under the constraint of 20% area overhead for the thermal ridges, we place the thermal ridges with different densities of thermal TSVs between the hottest CGs on the chip. For a 1024-core network on chip (NoC) design studied in this paper, the maximum temperature decreases from 408 K to 372 K, and the temperature nonuniformity is improved from 3.8 K/cm to 0.5~1.5 K/cm. This means that the temperature difference between two neighboring CGs is less than 0.06 K. Compared with micro-fluidic cooling channel, the proposed thermal ridge scheme is much more cost-effective and easy to implement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.