Abstract

Chip multiprocessor (CMP) is becoming increasingly popular in the processor industry. Efficient network-on-chip (NoC) that has similar performance to the processor cores is important in CMP design. Fat-tree-based on-chip network has many advantages over traditional mesh or torus-based networks in terms of throughput, power efficiency, and latency. It has a bright future in the development of CMP. However, the floorplan design of the fat-tree-based NoC is very challenging because of the complexity of topology. There are a large number of crossings and long interconnects, which cause severe performance degradation in the network. In electronic NoCs, the parasitic capacitance and inductance will be significant. In optical ones, large crosstalk noise and power loss will be introduced. The novel contribution of this paper is to propose a method to optimize the fat-tree floorplan, which can effectively reduce the number of crossings and minimize the interconnect length. Two types of floorplans are proposed, which could be applied to fat-tree-based networks of arbitrary size. Compared with the traditional one, our floorplans could reduce more than 87% of the crossings. Since the traversal distance for signals is related to the aspect ratio of the processor cores, we also present a method to calculate the optimum aspect ratio of the processor cores to minimize the traversal distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call