Abstract
Wave-equation datuming overcomes some of the problems that seismic data recorded on rugged surface topography present in routine image processing. The main problems are that (1) standard, optimized migration and processing algorithms assume data are recorded on a flat surface, and that (2) the static correction applied routinely to compensate for topography is inaccurate for waves that do not propagate vertically. Wave-based processes such as stacking, dip-moveout correction, normal-moveout correction, velocity analysis, and migration after static shift can be severely affected by the nonhyperbolic character of the reflections. To alleviate these problems, I apply wave-equation datuming early in the processing flow to upward continue the data to a flat datum, above the highest topography. This is what I refer to as “flooding the topography.” This approach does not require detailed a priori knowledge of the near-surface velocity, and it streamlines subsequent processing because the data are regridded onto a regularly sampled datum. Wave-equation datuming unravels the distortions caused by rugged topography, and unlike the static shift method, it does not adversely effect subsequent wave-based processing. The image obtained after wave-equation datuming exhibits better reflector continuity and more accurately represents the true structural image than the image obtained after static shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.