Abstract

Radiation and energy balances are key drivers of ecosystem water and carbon cycling. This study reports on ten years of eddy covariance measurements over groundwater-dependent ecosystems (GDEs) in New Mexico, USA, to compare the role of drought and flooding on radiation, water, and energy budgets of forests differing in species composition (native cottonwoodversusnonnative saltcedar) and flooding regime. After net radiation (700–800 W m−2), latent heat flux was the largest energy flux, with annual values of evapotranspiration exceeding annual precipitation by 250–600%. Evaporative cooling dominated the energy fluxes of both forest types, although cottonwood generated much lower daily values of sensible heat flux (<−5 MJ m−2 d−1). Drought caused a reduction in evaporative cooling, especially in the saltcedar sites where evapotranspiration was also reduced, but without a substantial decline in depth-to-groundwater. Our findings have broad implications on water security and the management of native and nonnative vegetation within semiarid southwestern North America. Specifically, consideration of the energy budgets of GDEs as they respond to fluctuations in climatic conditions can inform the management options for reducing evapotranspiration and maintaining in-stream flow, which is legally mandated as part of interstate and international water resources agreements.

Highlights

  • Partitioning of surface energy fluxes is a robust method for estimating landscape evapotranspiration (ET)

  • Mean annual ecosystem ET was significantly smaller in the saltcedar long-interflood interval (IFI) forest than the saltcedar short-IFI and cottonwood long-IFI forests

  • We found that sites dominated by cottonwood or saltcedar exhibited rates of ET that exceeded rainfall by 250% to 600%, strongly supporting the conclusion that these sites were groundwater-dependent

Read more

Summary

Introduction

Partitioning of surface energy fluxes is a robust method for estimating landscape evapotranspiration (ET). It is only with widespread use of eddy covariance (EC) techniques in the last few decades that all primary fluxes can be directly measured [1, 2]. Energy is transported via three mechanisms: radiation, conduction, and convection [7]. In terrestrial ecosystems, these processes are represented by the flux of net radiation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call