Abstract

There have been few studies on the role of nanofluids in oil displacement and injection parameters, despite their significant impact on the oil displacement effect. To enhance oil recovery in an ultralow-permeability reservoir, the nanosized oil-displacement agent with nano-SiO2 modified by a silane coupling agent as a main component was selected for the first time in the Changqing oilfield. To assess the performance of the nanofluid, various factors such as particle size, contact angle, interfacial tension, and emulsion stability were taken into consideration. The oil displacement effect of nanofluids was evaluated by a microscopic model and ultralow-permeability core displacement experiment, and its optimal injection parameters were determined. The average particle size of the nano-oil displacement agent is 22-30 nm. It can change the wetting condition of the rock from oil-wet to water-wet and reduce the oil-water interfacial tension. Even at 80 °C, the emulsion formed by the agent remained stable. The oil displacement experiment shows that the nano-oil displacement agent whose injection pressure increases can displace the residual oil trapped in small pores that cannot be affected by conventional water flooding. The injection mode of "nanoflooding agent drive + water drive + nanoflooding agent drive", injection rate of 0.1 mL/min, injection concentration of 0.5%, and injection volume of 0.5 PV (0.25 PV per segment), which can effectively guide the injection of the oil displacement agent, achieve the best oil displacement effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.