Abstract
AbstractPhenol oxidase (Pox) plays a key role in soil C cycle and its presence may affect soil C mineralization during crop residue decomposition. To examine soil dynamics and relationships between Pox, phenols, Fe2+, and C mineralization, we designed a 53‐d laboratory experiment conducted with and without rice straw addition and under non‐flooded and flooded conditions. The results demonstrate that rice straw can indeed decompose faster under flooded conditions. The addition of rice straw significantly increased soil Pox activity (up to 15‐fold), but only under flooded conditions. Rice straw application increased alkali extractable phenol (AEP) concentration by 129% at day 4. However, flooded conditions reduced soil AEP by 61% and 49% at day 53 with and without rice straw application, respectively. Phenol oxidase activity was positively correlated with dissolved organic C and Fe2+, while negatively related to AEP, which itself was positively correlated with C mineralization (i.e., CO2 emission rates). Also, all relationships between soil Pox, AEP, Fe2+, and C were stronger under flooded conditions. We therefore conclude that flooded conditions in paddy soil may promote straw decomposition as a result of the stimulation of Pox activity and phenol decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.