Abstract

The hydrodynamic behavior of a pulsed disc and doughnut column has been investigated using three different systems in the absence of mass transfer. Sauter-mean drop diameter ( d 32), flooding velocity and holdup at flooding have been measured at different operating conditions. The following operating variables have been studied: pulsation intensity and flow rate of both liquid phases. As expected, smaller mean drop sizes are obtained with the increase of pulsation intensity. The results also show no significant effect of continuous phase flow rate on mean drop size, which increases with increase of dispersed phase flow rate for the operating conditions investigated. A single correlation for the prediction of d 32 in the mixer-settler, transition and emulsion regimes of operation is proposed with a mean deviation of 7.32%. The maximum throughput is influenced mainly by pulsation intensity and interfacial tension. Two precise correlations are proposed for predicting flooding velocities in this column. The first is based on operating variables, column geometry, and system physical properties. The second one considers the same variables, except column geometry. Good agreement between prediction and experiments is found for all operating conditions investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.