Abstract
The emergence of small unmanned aerial vehicles (UAV) along with inexpensive sensors presents the opportunity to collect thousands of images after each natural disaster with high flexibility and easy maneuverability for rapid response and recovery. Despite the ease of data collection, data analysis of the big datasets remains a significant barrier for scientists and analysts. Here we propose an integration of densely connected CNN and RNN networks, which is able to accurately segment out semantically meaningful object boundaries with end-to-end learning. The proposed network is applied on UAV aerial images of flooded areas in Houston, TX. We achieved 96% accuracy in detecting flooded areas on a large UAV dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.