Abstract
AbstractFloods are both complex and destructive, and in most parts of the world cause injury, death, loss of agricultural land, and social disruption. Flood susceptibility (FS) maps are used by land‐use managers and land owners to identify areas that are at risk from flooding and to plan accordingly. This study uses machine learning ensembles to produce objective and reliable FS maps for the Haraz watershed in northern Iran. Specifically, we test the ability of the support vector regression (SVR), together with linear kernel (LK), base classifier (BC), and hyper‐parameter optimization (HPO), to identify flood‐prone areas in this watershed. We prepared a map of 201 past floods to predict future floods. Of the 201 flood events, 151 (75%) were used for modeling and 50 (25%) were used for validation. Based on the relevant literature and our field survey of the study area, 10 effective factors were selected and prepared for flood zoning. The results show that three of the 10 factors are most important for predicting flood‐sensitive areas, specifically and in order of importance, slope, distance to the river and river. Additionally, the SVR‐HPO model, with area under the curve values of 0.986 and 0.951 for the training and testing phases, outperformed the other two tested models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.