Abstract
Abstract As climates change globally, water-related disasters increase, causing substantial economic losses and safety risks. During floods, river water levels show unpredictable fluctuations, introducing substantial noise that complicates accurate prediction. A hybrid model that uses eight-dimensional input data from hydrological and meteorological stations is proposed to address these challenges. Initially, the Variational Mode Decomposition preprocesses and denoises water level data, resulting in decomposed Intrinsic Mode Functions (IMFs). Then, the Pearson correlation coefficient between each IMF and input characteristics is computed, and the fluctuation factor for each IMF is defined. IMFs are categorized based on a threshold, leading to a hybrid prediction model. This model integrates convolutional neural networks (CNNs) for spatial information and bidirectional long short-term memory (BiLSTM) networks with an attention mechanism for learning from past and future data points. Comparative evaluations of mean absolute percentage error, root mean square error, mean absolute error, and goodness of fit (R2) show that the proposed model outperforms existing LSTM and CNN–BiLSTM frameworks, reducing RMSE by at least 20% and increasing R2 by approximately 10% on average. The model's practical significance lies in improving the accuracy and efficiency of meteorological forecasting and flood warning systems, contributing substantially to global disaster preparedness and response strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.