Abstract

An extensive number of farmlands in the Poyang Lake region of China have been submerged due to the impact of flood disasters, resulting in significant agricultural economic losses. Therefore, it is of great importance to conduct the long-term temporal monitoring of flood-induced water body changes using remote sensing technology. However, the scarcity of optical images and the complex, fragmented terrain are pressing issues in the current water body extraction efforts in southern hilly regions, particularly due to difficulties in distinguishing shadows from numerous mountain and water bodies. For this purpose, this study employs Sentinel-1 synthetic aperture radar (SAR) data, complemented by water indices and terrain features, to conduct research in the Poyang Lake area. The results indicate that the proposed multi-source data water extraction method based on microwave remote sensing data can quickly and accurately extract a large range of water bodies and realize long-time monitoring, thus proving a new technical means for the accurate extraction of floodwater bodies in the Poyang Lake region. Moreover, the comparison of several methods reveals that CAU-Net, which utilizes multi-band imagery as the input and incorporates a channel attention mechanism, demonstrated the best extraction performance, achieving an impressive overall accuracy of 98.71%. This represents a 0.12% improvement compared to the original U-Net model. Moreover, compared to the thresholding, decision tree, and random forest methods, CAU-Net exhibited a significant enhancement in extracting flood-induced water bodies, making it more suitable for floodwater extraction in the hilly Poyang Lake region. During this flood monitoring period, the water extent in the Poyang Lake area rapidly expanded and subsequently declined gradually. The peak water area reached 4080 km2 at the height of the disaster. The severely affected areas were primarily concentrated in Yongxiu County, Poyang County, Xinjian District, and Yugan County.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call