Abstract
Urbanization and climate change are the main driving force in the development of sustainable strategies for managing water in cities, such as sustainable urban drainage systems (SUDS). Previous studies have identified the necessity to develop decision-making tools for SUDS in order to adequately implement these structures. This study proposes a simulation–optimization methodology that aims to ease the decision-making process when selecting and placing SUDS, with the specific goal of managing urban flooding. The methodology was applied to a real case study in Dresden, Germany. The most relevant variables when selecting SUDS were the spatial distribution of floods and the land uses in the catchment. Furthermore, the rainfall characteristics played an important role when selecting the different SUDS configurations. After the optimal SUDS configurations were determined, flood maps were developed, identifying the high potential that SUDS have for reducing flood volumes and depth, but showing them to be quite limited in reducing the flooded areas. The final section of the study proposes a combined frequency map of SUDS implementation, which is suggested for use as a final guide for the present study. The study successfully implemented a novel methodology that included land-use patterns and flood indicators to select SUDS in a real case study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.