Abstract

Most road‐stream crossings over ephemeral channels are vulnerable to extreme hydrologic events. Ford stream crossings (FSCs) are usually dangerous for the road traffic during periods of high flow, in particular under flash flood conditions. The present paper analyzes the flood hazards on the Mediterranean coast in the Region of Murcia (south‐east Spain), affecting this type of road‐stream crossing over dry channels, according to hydraulic variables and bedload transport rates estimated for discharges at bankfull and flood‐prone stages. Under such conditions, the safety of people and vehicles was obtained using numerical models, developed by previous researchers; in particular, water levels and flow velocities across ford reaches were compared with different trend curves between water depths and corresponding critical velocities for children and adults, and for various prototype vehicles. Specifically, two approaches to assess this type of hazards were proposed: a specific Hydraulic Hazard Index and an algorithm for estimating the flood hazard from criteria of bed stability and bedload transport capacity (Flood Hazard at Fords, FHF). In addition, different exposure levels were established, using a Flood Vulnerability Index, based on the FHF, the road category, and the annual average daily traffic. The FHF model gave the best results with regard to the magnitude of the damage observed in recent flash floods for flow stages similar to those simulated. According to the danger thresholds established for this index, half‐bankfull flows represent here a high risk: 27.3% of FSCs for mini‐cars and 18.2% for large cars. At bankfull, the FHF exhibits very high values for mini‐cars (77.3% of FSCs) and for large passenger vehicles (50% of FSCs), while at the floodprone stage, extreme FHF values are reached for all kinds of vehicles at most of the ford crossings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.