Abstract

Flood frequency analysis (FFA) is a necessary tool for water resources management and water infrastructure design. Owing to the existence of variability in sample representation, distribution selection, and distribution parameter estimation, flood quantile estimation is subjected to various levels of uncertainty, which is not negligible and avoidable. Hence, alternative methods to the conventional approach of FFA are desired for quantifying the uncertainty such as in the form of prediction interval. The primary focus of the paper was to develop a novel approach to quantify and optimize the prediction interval resulted from the non-stationarity of data set, which is reflected in the distribution parameters estimated, in FFA. This paper proposed the combination of the multi-objective optimization approach and the ensemble simulation technique to determine the optimal perturbations of distribution parameters for constructing the prediction interval of flood quantiles in FFA. To demonstrate the proposed approach, annual maximum daily flow data collected from two gauge stations on the Bow River, Alberta, Canada, were used. The results suggest that the proposed method can successfully capture the uncertainty in quantile estimates qualitatively using the prediction interval, as the number of observations falling within the constructed prediction interval is approximately maximized while the prediction interval is minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.