Abstract

In the future, as a result of global warming, it is possible that rainfall could become more intense and frequent. This could lead to more frequent triggering of damaging phenomena such as floods and landslides (named as a whole damaging hydrogeological events, DHE), and, consequently, to the increase of their impacts on territories, especially in regions where uncontrolled urban sprawl represents a factor that can exacerbate the problem. The analysis of a large quantity of information about both triggering rainfall and triggered phenomena can help to comprehend relationships between triggering precipitation and its related impacts. In this paper, to facilitate the investigation of the relationships between large and complex datasets concerning both rainfall and rainfall-related damage, we propose an index-based approach, illustrated by its application to the Calabria region (Southern Italy). In particular, this manuscript presents some results from a preliminary investigation aimed at assessing the “better” index to describe DHE. Five rainfall indices (RIs) were tested and five composite rainfall indices (CRIs), combinations of two or more RIs, are proposed. We calculated the RIs and the CRIs by means of 1,300,000 daily data registered in the observation period 1980–2020. The CRIs showed the best relationships with the data of damaging hydrogeological events (DHEs). Particularly, better results were obtained with landslides data than with floods data, perhaps due to the hydraulic characteristics of the Calabria rivers, affected by flash floods mainly influenced by very intense hourly rainfall events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call