Abstract

Dating recent lake sediment records yielding disturbed 210Pb profiles has been a problem of wide interest in palaeoclimatic and palaeoseismic studies over the last few centuries. When applied to an alpine lake sedimentary record, a high‐resolution sedimentological study reveals that the 210Pb profile is disturbed by the occurrence of single‐event deposits triggered by two different mechanisms: flood events deposits and gravity reworking. Removing disturbed layers from the 210Pb profile yields a logarithmic depth–activity relationship. Using a simple 210Pb decay model (CFCS) provides an assessment of mean accumulation rate of `continuous sedimentation', as opposed to `event‐linked sedimentation'. The correlation of the thickest four gravity‐reworked deposits with historically known earthquakes permits both validation and refinement of the age–depth relationship. This refinement highlights variations in accumulation rate consistent with post‐Little Ice Age climatic variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.