Abstract
This paper proposes the algorithm for flocking of group of nonholonomic mobile robots. Three protocols of smooth potential function are implemented, i.e. flocking, obstacle avoidance, and attracting to goal, as variables of velocity. The main scheme of control of the mobile robots is the use of trajectory tracking which is generated in order to obtain flocking behavior, collision and obstacle avoidance, and reaching the goal in cohesion by flocking. The convergence for flocking algorithm for single integrator dynamic systems is shown by using Lyapunov stability theorem to converge to the local minimum of flock and to the goal point. Simulation results perform that mobile robots can split, rejoin and then reach the goal. Moreover, the group of mobile robots can accomplish flocking through narrow space without collision with obstacles and among mobile robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.