Abstract

In this paper, we develop a hybrid control framework for addressing flocking and rendezvous formation control protocols for general nonlinear dynamical systems using stabilization of sets. The proposed framework develops a novel class of fixed-order, energy-based hybrid controllers as a means for achieving cooperative control formations. These dynamic controllers combine a logical switching architecture with the continuous system dynamics to guarantee that a system generalized energy function whose zero level set characterizes a specified system formation is strictly decreasing across switchings. The proposed approach addresses general nonlinear dynamical systems and is not limited to systems involving double integrator dynamics for formation control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.