Abstract

Local interactions between flock members in absence of centralized control generate collective dynamics characterized by coherent large-scale patterns. We investigate whether aggregates of individuals like birds, swarms and fishes behaving in concert with their neighbors may modify the physical properties of the fluid medium in which they are embedded. Using the K-Nearest Neighbors algorithm to simulate collective animal behavior, we showed that the occurrence of collective dynamics can modify the physical parameters of the phase space in which the interacting individuals’ trajectories take place. This means that lone individuals experience the nearby fluid medium (i.e., the air in case of birds/insects and the water in case of fishes) differently from flock members. In particular, our framework suggests that a bird belonging to a group and acting collectively with its neighbors perceives the nearby atmosphere as denser, compared with an isolated bird.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call