Abstract

The means by which non-enveloped viruses penetrate cellular membranes during cell entry remain poorly defined. Recent findings indicate that several members of this group share a common mechanism of membrane penetration in which the virus particle undergoes programmed conformational changes, leading to capsid disassembly and release of small membrane-interacting peptides. Flock House Virus (FHV), a member of the nodaviridae family, offers some unique advantages for studying non-enveloped virus entry. The simplicity of the FHV capsid, coupled with a robust reverse genetics system for virus expression and an abundance of structural and biochemical data, make FHV an ideal model system for such studies. Here, we review the FHV atomic structure and examine how these molecular details provide insight into the mechanism of FHV entry. In addition, recent studies of FHV entry are discussed and a current model of FHV entry and membrane penetration is presented. A complete understanding of host cell entry by this minimal system will help elucidate the mechanisms of non-enveloped virus membrane penetration in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.