Abstract

Inferring the root cause of failures among thousands of components in a data center network is challenging, especially for "gray" failures that are not reported directly by switches. Faults can be localized through end-to-end measurements, but past localization schemes are either too slow for large-scale networks or sacrifice accuracy. We describe Flock, a network fault localization algorithm and system that achieves both high accuracy and speed at datacenter scale. Flock uses a probabilistic graphical model (PGM) to achieve high accuracy, coupled with new techniques to dramatically accelerate inference in discrete-valued Bayesian PGMs. Large-scale simulations and experiments in a hardware testbed show Flock speeds up inference by >10000x compared to past PGM methods, and improves accuracy over the best previous datacenter fault localization approaches, reducing inference error by 1.19-11x on the same input telemetry, and by 1.2-55x after incorporating passive telemetry. We also prove Flock's inference is optimal in restricted settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.