Abstract

Humic and fulvic acids from various sources have been shown to give different electropherograms by capillary zone electrophoresis (CZE), depending on the pH of the electrolyte. This CZE work is extended here through investigations involving the titration of humic and fulvic acids with Fe(III) and Cu(II) cations. As increasing amounts of these cations were added to the humic substances (HUS), flocculation of metal-humic complexes occurred. This is believed to be caused by binding of the metal cations with negative carboxyl and phenolic sites on the HUS, resulting in a decrease of the repulsive forces that keep the HUS in a conformation more suitable for water solubility. The flocculated complexes were separated from the supernatant by centrifugation, and the supernatants were characterized as to total organic carbon (TOC) content, molecular weight (MW) using gel permeation chromatography, and average electrophoretic mobility (AEM) using CZE. The extent of flocculation correlated with both TOC and quantitative CZE measurements. The MW of the HUS remaining in solution actually decreased, presumably because of precipitation of larger molecules as they became insoluble because of reactions with the metals. Humic acids showed total precipitation of TOC with both metals at a concentration equivalent to their measured acidity. CZE demonstrated that certain fulvic acid fractions (low molecular weight phenolic acids) remained in solution even at high metal concentrations. In summary, changes in electrophoretic behavior of the soluble HUS could be related to changes in charge-to-mass ratios (charge densities) of both humic and fulvic acids with increasing metal cation concentration (neutralization). The copper treated HUS showed changes in their electrophoretic behavior even at low metal concentrations before flocculation, whereas the iron treated HUS flocculated uniformally over the range of added iron without significant changes in AEM. Thus these changes in CZE patterns illustrate different specific binding sites of the HUS for each metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.