Abstract

To mitigate the sudden increase in the production of waste engineering slurry, predominantly composed of Kaolinite, this study investigated the flocculation and dewatering of Kaolin slurry treated with single- and dual-polymer flocculants. The influence of the flocculant type and dosage, under single- and dual-dose conditions, on slurry's sedimentation and the filtration characteristics, were thoroughly discussed. The results reveal that the adsorption bridging of the polymeric flocculant, resulting from hydrogen bonds, exerts a more significant effect than electrical neutralization on forming a large floc. Under single-dose conditions, nonionic polyacrylamides (NPAMs) with the strongest adsorption bridging leads to biggest flocs and the maximum settling rate of 21.55 mm/s. Under the dual-dose conditions of polymeric aluminium chloride (PAC) and PAM, the size of the slurry's floc decreases with an increase in PAC dosage. Nevertheless, the filtration performance of the slurry improves, with the lowest SRF value of the flocculated slurry being 1.58 × 1011 m/kg as 3‰ PAC and 3‰ NPAM is dosed. The improvement is explained by the micro-pore distribution of sludge. According to Mercury intrusion porosimetry (MIP) test, the slurry treated with the optimal dosage of dual-polymer flocculant exhibits the greatest sludge pore size and connected porosity (with a maximum value of 20.99%). Furthermore, the study discusses and compares the flocculation mechanism of single- and dual-polymer flocculants. The obtained results provide guidance for selecting appropriate flocculants for dewatering inorganic slurries, using different dewatering methods, such as gravitational thickening or filter pressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.