Abstract

AbstractThe capability to integrate Internet of Things (IoT) technologies into business processes (BPs) has emerged as a transformative paradigm, offering unprecedented opportunities for organisations to enhance their operational efficiency and productivity. Interacting with the physical world and leveraging real-world data to make more informed business decisions is of greatest interest, and the idea of IoT-enhanced BPs promises to automate and improve business activities and permit them to adapt to the physical environment of execution. Nonetheless, combining these two domains is challenging, and it requires new modelling methods that do not increase notation complexity and provide independent execution between the process and the underlying device technology. In this work, we propose FloBP, a model-driven engineering approach separating concerns between the IoT and BPs, providing a structured and systematic approach to modelling and executing IoT-enhanced BPs. Applying the separation of concerns through an interdisciplinary team is needed to ensure that the approach covers all necessary process aspects, including technological and modelling ones. The FloBP approach is based on modelling tools and a microservices architecture to deploy BPMN models, and it facilitates integration with the physical world, providing flexibility to support multiple IoT device technologies and their evolution. A smart canteen scenario describes and evaluates the approach’s feasibility and its possible adoption by various stakeholders. The performed evaluation concludes that the application of FloBP facilitates the modelling and development of IoT-enhanced BPs by sharing and reusing knowledge among IoT and BP experts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.