Abstract
Natural sea waves are typically multi-directional. However, the existing studies on the interaction of waves and structures mostly concentrate on uni-directional waves. In this study, using a higher-order boundary element method based on the nonlinear potential flow theory and the perturbation expansion technique, a numerical model is developed to investigate the hydrodynamic performance of a semi-submersible wind turbine foundation in uni- and multi-directional waves. Comprehensive validations with the wave-tank experiment are conducted. It is found that the significant platform response increases with the peak wave period in uni-directional irregular waves, while the high-frequency “energy” ratio changes little. The significant wave height hardly influences motion responses from either the time- or the frequency-domain perspective. In multi-directional irregular waves, the translational motions exhibit monotonicity with wave directionality. The energy concentration around the primary direction leads to a dominant wave-frequency motion and an increase in the high-frequency “energy” ratio. Although the individual modal motion responses are variable functions of wave nonlinearity, their averaged translational and rotational motions are nearly constant, indicating an energy transition or a trade-off relationship among the modal motions. In addition, unlike the uni-directional wave case, the low- and high-frequency “energy” ratios increase quadratically and decrease linearly with the significant wave height in multi-directional waves, respectively. All these findings demonstrate that wave directionality can change the wave–structure interaction properties and therefore needs to be adequately considered in engineering applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.