Abstract

Whilst there is an interest in floating solar energy systems in coastal and offshore regions to utilise available sea space, they are subject to ocean waves that introduce constant momentum. Consequently, solar panels undergo periodic motions with the waves, causing a continuous change in tilt angle. The tilt angle variation is a sub-optimal process and leads to a loss of energy harnessing efficiency. To investigate this phenomenon, the present study innovatively installed a solar simulator on top of a wave tank. The solar simulator was used to generate high-strength light beams, under which, a floating solar unit was subject to periodic incident waves. Wave-induced motions to the solar system as well as the output power were measured. A systematic analysis of the results indicated that a floating solar unit can have significantly lower power output in waves, compared to its calm-water counterpart. An evident link was established between the wave-induced power loss and the wave-induced rotational movement of the panel. An empirical equation was derived which shows the power loss is predictable through the rotational amplitude. The results also highlight the importance of implementing wave attenuation technologies such as breakwaters to minimise wave-induced motions to floating solar systems. Overall, this research presents a novel experimental approach to assess the difference of floating solar power in ocean-wave versus calm-water scenarios, providing valuable insights for future solar projects on the ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.