Abstract

The floating sheath potential in a plasma having a Maxwellian electron distribution function is e?>s = -kTe 1n (a/b)/2 where Te is the electron temperature, a is the ratio of electron temperature to ion temperature, and b is the ratio of electron mass to ion mass. This expression is derived by equating the flux of electrons and ions to a surface in the plasma. Only electrons initially having an energy greater than -e?s flow to the surface. These electrons are in the tail of the distribution, a region that differs significantly from a Maxwellian in many plasmas. An analysis is performed where the sheath potential is solved for using a two-temperature model for the electron distribution function. The two-temperature model accurately describes the distortion from a Maxwellian in the tail of the distribution function. The magnitude of the sheath potential calculated with the two-temperature distribution is significantly smaller than that obtained using a Maxwellian distribution, a result of the reduction in the relative abundance of energetic electrons in the tail of the distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.