Abstract

Design and evaluation of a CORDIC (COordinate Rotation DIgital Computer) algorithm for a floatingpoint division operation is presented in this paper. In general, division operation based on CORDIC algorithm has a limitation in term of the range of inputs that can be processed by the CORDIC machine to give proper convergence and precise division operation result. A hardware architecture of CORDIC algorithm capable of processing broader input ranges is implemented and presented in this paper by using a pre-processing and a post-processing stage. The performance as well as the calculation error statistics over exhaustive sets of input tests are evaluated. The results show that the CORDIC algorithm can be well-convergence and gives precise division operation results with broader input ranges. The proposed hardware architecture is modeled in VHDL and synthesized on a CMOS standard-cell technology and a FPGA device, resulting 1 GFlops on the CMOS and 210.812 MFlops on the FPGA device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.